EC 2203 ELECTROMAGNETIC FIELDS Syllabus Regulation 2008/2010

EC 2203 ELECTROMAGNETIC FIELDS Syllabus Regulation 2008/2010

Sem: Fourth Semester

Subject Name: Electro Magnetic Fields

Subject Code:EC2203

Regulation : 2008/2010

Download:EC 2203 ELECTROMAGNETIC FIELDS Syllabus Regulation 2008/2010

EC 2203                      ELECTROMAGNETIC FIELDS                                           3 1 0 4


To  familiarize  the  student  to  the  concepts,  calculations  and  pertaining  to  electric, magnetic and electromagnetic fields so that an in depth understanding of antennas, electronic devices, Waveguides is possible.


  • To analyze fields a potentials due to static changes ·   To evaluate static magnetic fields
  • To understand how materials affect electric and magnetic fields
  • To understand the relation between the fields under time varying situations ·   To understand principles of propagation of uniform plane waves.


UNIT I             STATIC ELECTRIC FIELDS                                                                     9

Introduction  to  Co-ordinate  System   -  Rectangular  -  Cylindrical  and  Spherical  Co-

ordinate System – Introduction to line, Surface and Volume Integrals – Definition of Curl, Divergence and Gradient – Meaning of Stokes theorem and Divergence theorem
Coulomb’s Law in Vector Form  – Definition of Electric Field Intensity  – Principle of Superposition – Electric Field due to discrete charges – Electric field due to continuous charge distribution – Electric Field due to charges distributed uniformly on an infinite and finite line – Electric Field on the axis of a uniformly charged circular disc – Electric Field due to an infinite uniformly charged sheet.

Electric Scalar Potential – Relationship between potential and electric field – Potential due to infinite uniformly charged line – Potential due to electrical dipole – Electric Flux Density – Gauss Law – Proof of Gauss Law – Applications.


UNIT II STATIC MAGNETIC FIELD                                                                                  9

The Biot-Savart Law in vector form – Magnetic Field intensity due to a finite and infinite
wire  carrying  a  current  I -  Magnetic  field  intensity  on  the  axis  of  a  circular  and

rectangular loop carrying a current I – Ampere’s circuital law and simple applications.

Magnetic flux density – The Lorentz force equation for a moving charge and applications – Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential.


UNIT III           ELECTRIC AND MAGNETIC FIELDS IN MATERIALS                          9


Poisson’s and Laplace’s equation – Electric Polarization-Nature of dielectric materials-
Definition of Capacitance – Capacitance of various geometries using Laplace’s equation
- Electrostatic energy and energy density  – Boundary conditions for electric fields  -
Electric current  – Current density – point form of ohm’s law – continuity equation for

Definition of Inductance  – Inductance of loops and solenoids  – Definition of mutual inductance – simple examples. Energy density in magnetic fields – Nature of magnetic materials – magnetization and permeability – magnetic boundary conditions.



UNIT IV           TIME VARYING ELECTRIC AND MAGNETIC FIELDS                         9


Faraday’s law  – Maxwell’s Second Equation in integral form from Faraday’s Law  -
Equation expressed in point form.

Displacement  current  -  Ampere’s  circuital  law  in  integral  form     -  Modified  form  of

Ampere’s circuital law as Maxwell’s first equation in integral form – Equation expressed in point form. Maxwell’s four equations in integral form and differential form.
Poynting Vector and the flow of power – Power flow in a co-axial cable – Instantaneous Average and Complex Poynting Vector.

UNIT V            ELECTROMAGNETIC WAVES                                                                9

Derivation of Wave Equation – Uniform Plane Waves – Maxwell’s equation in Phasor

form – Wave equation in Phasor form – Plane waves in free space and in a homogenous


Wave  equation  for  a  conducting  medium      -  Plane  waves  in  lossy  dielectrics       -

Propagation in good conductors – Skin effect.

Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor -
normal incidence  – Reflection of Plane Waves by a perfect dielectric  – normal and oblique incidence. Dependence on Polarization.   Brewster angle.

TUTORIAL     15                                                                                                TOTAL : 60



1.  W H.Hayt & J A Buck : “Engineering Electromagnetics” TATA McGraw-Hill, 7th
Edition 2007 (Unit I,II,III ).

2.  E.C. Jordan & K.G. Balmain     “Electromagnetic Waves and Radiating Systems.”

Pearson Education/PHI 4nd edition 2006. (Unit IV, V).



1.         Matthew  N.O.Sadiku:    “Elements  of  Engineering  Electromagnetics”  Oxford

University Press, 4th edition, 2007

2.           Narayana  Rao,  N  :  “Elements  of  Engineering  Electromagnetics”  6th  edition,

Pearson Education, New Delhi, 2006.

3.         Ramo,  Whinnery  and  Van  Duzer:     “Fields  and  Waves  in  Communications

Electronics” John Wiley & Sons ,3rd edition 2003.

4.         David K.Cheng:  “Field and Wave Electromagnetics  – Second Edition-Pearson

Edition, 2004.

5.         G.S.N.  Raju,  Electromagnetic  Field  Theory  &  Transmission  Lines,  Pearson

Education, 2006